๐Ÿ“Š Algebra 9: Matrices

Master matrix algebra and operations

๐ŸŽฏ Learning Objectives

  • Understand matrix notation and dimensions
  • Perform matrix addition, subtraction, and scalar multiplication
  • Master matrix multiplication and properties
  • Find determinants and matrix inverses
  • Solve systems of equations using matrices
  • Apply matrices to real-world problems

1. Understanding Matrices

๐Ÿ”ข What is a Matrix?

A matrix is a rectangular array of numbers arranged in rows and columns, enclosed in brackets.

Example 2ร—3 Matrix:

A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}

Dimensions: 2 rows ร— 3 columns

Notation: A is a 2ร—3 matrix

๐ŸŽฎ Matrix Builder

Enter Matrix Values:

Your Matrix:

2. Basic Matrix Operations

โž• Matrix Addition and Subtraction

Matrices of the same dimensions can be added or subtracted by adding/subtracting corresponding elements.

Example:

A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
+
B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}
=
\begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}
๐Ÿงฎ Matrix Calculator

Matrix A (2ร—2):

Matrix B (2ร—2):

3. Matrix Multiplication

โœ–๏ธ Matrix Multiplication Rules

Matrix multiplication is more complex than element-wise operations. The number of columns in the first matrix must equal the number of rows in the second matrix.

Compatibility:

If A is mร—n and B is nร—p, then Aร—B is mร—p

Example:

\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \times \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} (1ร—5 + 2ร—7) & (1ร—6 + 2ร—8) \\ (3ร—5 + 4ร—7) & (3ร—6 + 4ร—8) \end{pmatrix}

= \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}

๐Ÿ”ข Matrix Multiplication Tool

Matrix A (2ร—2):

ร—

Matrix B (2ร—2):

=

Result:

19
22
43
50

4. Determinants and Matrix Inverses

๐Ÿ” Matrix Determinant

The determinant is a scalar value that can be computed from a square matrix.

For a 2ร—2 matrix:

\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc

Example:

\det\begin{pmatrix} 3 & 8 \\ 4 & 10 \end{pmatrix} = (3ร—10) - (8ร—4) = 30 - 32 = -2

๐Ÿงฎ Determinant Calculator

Calculate determinant of:

๐Ÿ”„ Matrix Inverse

The inverse of a matrix A is denoted Aโปยน and satisfies A ร— Aโปยน = I (identity matrix).

For a 2ร—2 matrix:

A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}

(where A = \begin{pmatrix} a & b \\ c & d \end{pmatrix})

5. Solving Systems with Matrices

๐ŸŽฏ Matrix Method for Systems

Systems of linear equations can be solved using matrices: AX = B, where X is the solution matrix.

Example System:

2x + 3y = 7

4x - 2y = 2

Matrix Form:

\begin{pmatrix} 2 & 3 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}

Solution: x = 1, y = 1.67

๐ŸŽฏ System Solver (2ร—2)

Enter system coefficients:

x + y =
x + y =

6. Real-World Applications

๐ŸŒ Matrix Applications

๐Ÿ—๏ธ Computer Graphics

Transformations (rotation, scaling, translation) use matrices

๐Ÿ“Š Business Analytics

Input-output models and economic analysis

๐Ÿ”ฌ Physics

Momentum conservation and quantum mechanics

๐ŸŽฒ Markov Chain: Weather Prediction

A weather model: If sunny today, 80% chance sunny tomorrow, 20% rainy. If rainy today, 40% sunny, 60% rainy tomorrow.

Transition Matrix:

P = \begin{pmatrix} 0.8 & 0.4 \\ 0.2 & 0.6 \end{pmatrix}

If today is sunny (state vector \begin{pmatrix} 1 \\ 0 \end{pmatrix}), what's the probability distribution tomorrow?

๐Ÿ“„ algebra-matrices.html | 2025-12-26