NoSQL Databases

Introduction

NoSQL (Not Only SQL) databases provide a mechanism for storage and retrieval of data that uses looser consistency models than traditional relational databases. They are designed to handle large volumes of unstructured data and provide flexible schema design.

Key Characteristics:

  • Schema-less design
  • Horizontal scalability
  • Eventually consistent
  • BASE properties
  • Distributed architecture
  • High availability

Types of NoSQL

Document Stores

Store data in document format (JSON, BSON, etc.):

// MongoDB document example
{
    "_id": "123",
    "username": "john_doe",
    "profile": {
        "name": "John Doe",
        "age": 30,
        "interests": ["coding", "music"]
    },
    "posts": [
        {
            "title": "NoSQL Introduction",
            "likes": 42
        }
    ]
}

Key-Value Stores

Simple key-value pair storage:

# Redis commands example
SET user:123 "John Doe"
SET user:123:email "john@example.com"
EXPIRE user:session:123 3600
HSET user:123:profile name "John Doe" age "30"

Wide-Column Stores

Two-dimensional key-value storage:

-- Cassandra table example
CREATE TABLE users (
    user_id uuid,
    username text,
    email text,
    created_at timestamp,
    PRIMARY KEY (user_id, created_at)
) WITH CLUSTERING ORDER BY (created_at DESC);

Graph Databases

Store data in nodes and edges:

// Neo4j query example
CREATE (john:Person {name: 'John'})
CREATE (jane:Person {name: 'Jane'})
CREATE (john)-[:FOLLOWS]->(jane)
RETURN john, jane;

Use Cases

Document Stores

Ideal for:

  • Content management systems
  • Catalogs and product data
  • User profiles and preferences
  • Real-time analytics

Key-Value Stores

Ideal for:

  • Caching
  • Session management
  • Real-time recommendations
  • Shopping carts

Wide-Column Stores

Ideal for:

  • Time-series data
  • Weather data
  • IoT applications
  • Large-scale data analytics

Graph Databases

Ideal for:

  • Social networks
  • Recommendation engines
  • Fraud detection
  • Network topology

Popular Implementations

Document Stores

Popular document database solutions:

  • MongoDB - Most popular document store
  • CouchDB - Focus on sync and offline-first
  • RavenDB - .NET-based document store

Key-Value Stores

  • Redis - In-memory data structure store
  • DynamoDB - AWS's managed NoSQL
  • Riak - Distributed key-value store

Wide-Column Stores

  • Cassandra - Highly scalable columnar store
  • HBase - Hadoop database
  • ScyllaDB - High-performance alternative

Scaling & Performance

Horizontal Scaling

Scaling Strategies:

  • Sharding
  • Replication
  • Load balancing
  • Data partitioning

Performance Considerations

Key Factors:

  • Data model design
  • Query patterns
  • Consistency requirements
  • Hardware resources

Best Practices

Design Guidelines

Best Practices:

  • Design for query patterns
  • Plan for scaling
  • Consider data consistency needs
  • Implement proper backup strategies
  • Monitor performance
  • Handle failure scenarios

Security Considerations

Security Measures:

  • Authentication
  • Authorization
  • Encryption at rest
  • Network security
  • Audit logging